Posttranslational processing of alpha-tubulin during axoplasmic transport in CNS axons
نویسندگان
چکیده
Tubulin proteins in mouse retinal ganglion cell (RGC) neurons were analyzed to determine whether they undergo posttranslational processing during axoplasmic transport. Alpha- and beta-tubulin comprised heterogeneous proteins in the primary optic pathway (optic nerve and optic tract) when examined by two-dimensional (2D) PAGE. In addition, however, alpha-tubulin exhibited regional heterogeneity when consecutive 1.1-mm segments of the optic pathway were analyzed separately. In proximal segments, alpha-tubulin consisted of two predominant proteins separable by isoelectric point and several less abundant species. In more distal segments, these predominant proteins decreased progressively and the alpha-tubulin region of the gel was represented by less abundant multiple forms only; beta-tubulin region of the gel was represented by less abundant multiple forms only; beta-tubulin was the same in all segments. After intravitreal injection of [3H]proline to mice, radiolabeled alpha- and beta-tubulin heteroproteins were conveyed together at a rate of 0.1-0.2 mm/d in the slowest phase of axoplasmic transport. At 45 d postinjection, the distribution of radiolabeled heterogeneous forms a alpha- and beta-tubulin in consecutive segments of optic pathway resembled the distribution of unlabeled proteins by 2D PAGE, indicating that regional heterogeneity of tubulin arises during axonal transport. Peptide mapping studies demonstrated that the progressive alteration of alpha-tubulin revealed by PAGE analysis cannot be explained by contamination of the alpha-tubulin region by other proteins on gels. The results are consistent with the posttranslational processing of alpha-tubulin during axoplasmic transport. These observations, along with the accompanying report (J. Cell Biol., 1982, 94:150-158), provide additional evidence that CNS axons may be regionally specialized.
منابع مشابه
Posttranslational Processing of Transport in CNS Axons -Tubulin during Axoplasmic
Tubulin proteins in mouse retinal ganglion cell (RGC) neurons were analyzed to determine whether they undergo posttranslational processing during axoplasmic transport. ~and /~-tubulin comprised heterogeneous proteins in the primary optic pathway (optic nerve and optic tract) when examined by two-dimensional (2D) PAGE. In addition, however, ~tubulin exhibited regional heterogeneity when consecut...
متن کاملPosttranslational modification of a neurofilament protein during axoplasmic transport: implications for regional specialization of CNS axons
The possibility that proteins are modified during axoplasmic transport in central nervous system axons was examined by analyzing neurofilament proteins (200,000, 140,000, and 70,000 mol wt) along the mouse primary optic pathway (optic nerve and optic tract). The major neurofilament proteins (NFPs) exhibited considerable microheterogeneity. At least three forms of the " 140,000" neurofilament pr...
متن کاملPosttranslational modification of neurofilament proteins by phosphate during axoplasmic transport in retinal ganglion cell neurons.
The progressive modification of newly synthesized neurofilament proteins (NFPs) during axoplasmic transport in mouse retinal ganglion cell (RGC) neurons was studied after RGC perikarya were pulse-labeled with 32P-orthophosphate or radiolabeled amino acids. The 3 NFP subunits, H(igh), M(iddle), and L(ow), were among a group of axonally transported proteins that incorporated high levels of 32P. C...
متن کاملPosttranslational Modifications of Tubulin and the Polarized Transport of Kinesin-1 in Neurons
Polarized transport by microtubule-based motors is critical for neuronal development and function. Selective translocation of the Kinesin-1 motor domain is the earliest known marker of axonal identity, occurring before morphological differentiation. Thus, Kinesin-1-mediated transport may contribute to axonal specification. We tested whether posttranslational modifications of tubulin influence t...
متن کاملExclusion of integrins from CNS axons is regulated by Arf6 activation and the AIS.
Integrins are adhesion and survival molecules involved in axon growth during CNS development, as well as axon regeneration after injury in the peripheral nervous system (PNS). Adult CNS axons do not regenerate after injury, partly due to a low intrinsic growth capacity. We have previously studied the role of integrins in axon growth in PNS axons; in the present study, we investigate whether int...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 94 شماره
صفحات -
تاریخ انتشار 1982